Hands On Machine Learning With Scikit Learn And Tensorflow

Download Hands On Machine Learning With Scikit Learn And Tensorflow full books in PDF, epub, and Kindle. Read online free Hands On Machine Learning With Scikit Learn And Tensorflow ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
Author :
Publisher : "O'Reilly Media, Inc."
Total Pages : 851
Release :
ISBN-10 : 9781492032595
ISBN-13 : 149203259X
Rating : 4/5 (59X Downloads)

Book Synopsis Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow by : Aurélien Géron

Download or read book Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow written by Aurélien Géron and published by "O'Reilly Media, Inc.". This book was released on 2019-09-05 with total page 851 pages. Available in PDF, EPUB and Kindle. Book excerpt: Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural net architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets


Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Related Books

Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
Language: en
Pages: 851
Authors: Aurélien Géron
Categories: Computers
Type: BOOK - Published: 2019-09-05 - Publisher: "O'Reilly Media, Inc."

DOWNLOAD EBOOK

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow
Language: en
Pages: 851
Authors: Aurélien Géron
Categories: Computers
Type: BOOK - Published: 2019-09-05 - Publisher: O'Reilly Media

DOWNLOAD EBOOK

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about
Machine Learning with PyTorch and Scikit-Learn
Language: en
Pages: 775
Authors: Sebastian Raschka
Categories: Computers
Type: BOOK - Published: 2022-02-25 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to
Mathematics for Machine Learning
Language: en
Pages: 392
Authors: Marc Peter Deisenroth
Categories: Computers
Type: BOOK - Published: 2020-04-23 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, opti
Machine Learning
Language: en
Pages: 407
Authors: Stephen Marsland
Categories: Business & Economics
Type: BOOK - Published: 2011-03-23 - Publisher: CRC Press

DOWNLOAD EBOOK

Traditional books on machine learning can be divided into two groups- those aimed at advanced undergraduates or early postgraduates with reasonable mathematical