Instabilities and Chaos in Quantum Optics
Author | : F.Tito Arecchi |
Publisher | : Springer Science & Business Media |
Total Pages | : 260 |
Release | : 2012-12-06 |
ISBN-10 | : 9783642717086 |
ISBN-13 | : 364271708X |
Rating | : 4/5 (08X Downloads) |
Download or read book Instabilities and Chaos in Quantum Optics written by F.Tito Arecchi and published by Springer Science & Business Media. This book was released on 2012-12-06 with total page 260 pages. Available in PDF, EPUB and Kindle. Book excerpt: Of the variety of nonlinear dynamical systems that exhibit deterministic chaos optical systems both lasers and passive devices provide nearly ideal systems for quantitative investigation due to their simplicity both in construction and in the mathematics that describes them. In view of their growing technical application the understanding, control and possible exploitation of sources of instability in these systems has considerable practical importance. The aim of this volume is to provide a comprehensive coverage of the current understanding of optical instabilities through a series of reviews by leading researchers in the field. The book comprises nine chapters, five on active (laser) systems and four on passive optically bistable systems. Instabilities and chaos in single- (and multi-) mode lasers with homogeneously and broadened gain media are presented and the influence of an injected signal, loss modulation and also feedback of laser output on this behaviour is treated. Both electrically excited and optically pumped gas lasers are considered, and an analysis of dynamical instabilities in the emission from free electron lasers are presented. Instabilities in passive optically bistable systems include a detailed analysis of the global bifurcations and chaos in which transverse effects are accounted for. Experimental verification of degenerative pulsations and chaos in intrinsic bistable systems is described for various optical feedback systems in which atomic and molecular gases and semiconductors are used as the nonlinear media. Results for a hybrid bistable optical system are significant in providing an important test of current understanding of the dynamical behaviour of passive bistable systems.