Advances In Learning Automata And Intelligent Optimization

Download Advances In Learning Automata And Intelligent Optimization full books in PDF, epub, and Kindle. Read online free Advances In Learning Automata And Intelligent Optimization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Advances in Learning Automata and Intelligent Optimization

Advances in Learning Automata and Intelligent Optimization
Author :
Publisher : Springer Nature
Total Pages : 340
Release :
ISBN-10 : 9783030762919
ISBN-13 : 3030762912
Rating : 4/5 (912 Downloads)

Book Synopsis Advances in Learning Automata and Intelligent Optimization by : Javidan Kazemi Kordestani

Download or read book Advances in Learning Automata and Intelligent Optimization written by Javidan Kazemi Kordestani and published by Springer Nature. This book was released on 2021-06-23 with total page 340 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is devoted to the leading research in applying learning automaton (LA) and heuristics for solving benchmark and real-world optimization problems. The ever-increasing application of the LA as a promising reinforcement learning technique in artificial intelligence makes it necessary to provide scholars, scientists, and engineers with a practical discussion on LA solutions for optimization. The book starts with a brief introduction to LA models for optimization. Afterward, the research areas related to LA and optimization are addressed as bibliometric network analysis. Then, LA's application in behavior control in evolutionary computation, and memetic models of object migration automata and cellular learning automata for solving NP hard problems are considered. Next, an overview of multi-population methods for DOPs, LA's application in dynamic optimization problems (DOPs), and the function evaluation management in evolutionary multi-population for DOPs are discussed. Highlighted benefits • Presents the latest advances in learning automata-based optimization approaches. • Addresses the memetic models of learning automata for solving NP-hard problems. • Discusses the application of learning automata for behavior control in evolutionary computation in detail. • Gives the fundamental principles and analyses of the different concepts associated with multi-population methods for dynamic optimization problems.


Advances in Learning Automata and Intelligent Optimization Related Books