Ant Algorithms For Next Generation Networks Optimization

Download Ant Algorithms For Next Generation Networks Optimization full books in PDF, epub, and Kindle. Read online free Ant Algorithms For Next Generation Networks Optimization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Ant Colony Optimization

Ant Colony Optimization
Author :
Publisher : MIT Press
Total Pages : 324
Release :
ISBN-10 : 0262042193
ISBN-13 : 9780262042192
Rating : 4/5 (192 Downloads)

Book Synopsis Ant Colony Optimization by : Marco Dorigo

Download or read book Ant Colony Optimization written by Marco Dorigo and published by MIT Press. This book was released on 2004-06-04 with total page 324 pages. Available in PDF, EPUB and Kindle. Book excerpt: An overview of the rapidly growing field of ant colony optimization that describes theoretical findings, the major algorithms, and current applications. The complex social behaviors of ants have been much studied by science, and computer scientists are now finding that these behavior patterns can provide models for solving difficult combinatorial optimization problems. The attempt to develop algorithms inspired by one aspect of ant behavior, the ability to find what computer scientists would call shortest paths, has become the field of ant colony optimization (ACO), the most successful and widely recognized algorithmic technique based on ant behavior. This book presents an overview of this rapidly growing field, from its theoretical inception to practical applications, including descriptions of many available ACO algorithms and their uses. The book first describes the translation of observed ant behavior into working optimization algorithms. The ant colony metaheuristic is then introduced and viewed in the general context of combinatorial optimization. This is followed by a detailed description and guide to all major ACO algorithms and a report on current theoretical findings. The book surveys ACO applications now in use, including routing, assignment, scheduling, subset, machine learning, and bioinformatics problems. AntNet, an ACO algorithm designed for the network routing problem, is described in detail. The authors conclude by summarizing the progress in the field and outlining future research directions. Each chapter ends with bibliographic material, bullet points setting out important ideas covered in the chapter, and exercises. Ant Colony Optimization will be of interest to academic and industry researchers, graduate students, and practitioners who wish to learn how to implement ACO algorithms.


Ant Colony Optimization Related Books