Bringing Bayesian Models To Life

Download Bringing Bayesian Models To Life full books in PDF, epub, and Kindle. Read online free Bringing Bayesian Models To Life ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Bringing Bayesian Models to Life

Bringing Bayesian Models to Life
Author :
Publisher : CRC Press
Total Pages : 591
Release :
ISBN-10 : 9780429513374
ISBN-13 : 0429513372
Rating : 4/5 (372 Downloads)

Book Synopsis Bringing Bayesian Models to Life by : Mevin B. Hooten

Download or read book Bringing Bayesian Models to Life written by Mevin B. Hooten and published by CRC Press. This book was released on 2019-05-15 with total page 591 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bringing Bayesian Models to Life empowers the reader to extend, enhance, and implement statistical models for ecological and environmental data analysis. We open the black box and show the reader how to connect modern statistical models to computer algorithms. These algorithms allow the user to fit models that answer their scientific questions without needing to rely on automated Bayesian software. We show how to handcraft statistical models that are useful in ecological and environmental science including: linear and generalized linear models, spatial and time series models, occupancy and capture-recapture models, animal movement models, spatio-temporal models, and integrated population-models. Features: R code implementing algorithms to fit Bayesian models using real and simulated data examples. A comprehensive review of statistical models commonly used in ecological and environmental science. Overview of Bayesian computational methods such as importance sampling, MCMC, and HMC. Derivations of the necessary components to construct statistical algorithms from scratch. Bringing Bayesian Models to Life contains a comprehensive treatment of models and associated algorithms for fitting the models to data. We provide detailed and annotated R code in each chapter and apply it to fit each model we present to either real or simulated data for instructional purposes. Our code shows how to create every result and figure in the book so that readers can use and modify it for their own analyses. We provide all code and data in an organized set of directories available at the authors' websites.


Bringing Bayesian Models to Life Related Books

Bringing Bayesian Models to Life
Language: en
Pages: 591
Authors: Mevin B. Hooten
Categories: Science
Type: BOOK - Published: 2019-05-15 - Publisher: CRC Press

DOWNLOAD EBOOK

Bringing Bayesian Models to Life empowers the reader to extend, enhance, and implement statistical models for ecological and environmental data analysis. We ope
Bayesian Models
Language: en
Pages: 315
Authors: N. Thompson Hobbs
Categories: Science
Type: BOOK - Published: 2015-08-04 - Publisher: Princeton University Press

DOWNLOAD EBOOK

Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way
Bayesian Inference of State Space Models
Language: en
Pages: 503
Authors: Kostas Triantafyllopoulos
Categories: Mathematics
Type: BOOK - Published: 2021-11-12 - Publisher: Springer Nature

DOWNLOAD EBOOK

Bayesian Inference of State Space Models: Kalman Filtering and Beyond offers a comprehensive introduction to Bayesian estimation and forecasting for state space
Bayes Rules!
Language: en
Pages: 606
Authors: Alicia A. Johnson
Categories: Mathematics
Type: BOOK - Published: 2022-03-03 - Publisher: CRC Press

DOWNLOAD EBOOK

Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling “A thoughtful and entertaining book, and a great way to get started with Bayesian analys
Bayesian Time Series Models
Language: en
Pages: 432
Authors: David Barber
Categories: Computers
Type: BOOK - Published: 2011-08-11 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

The first unified treatment of time series modelling techniques spanning machine learning, statistics, engineering and computer science.