Finite Volumes For Complex Applications Vii Methods And Theoretical Aspects

Download Finite Volumes For Complex Applications Vii Methods And Theoretical Aspects full books in PDF, epub, and Kindle. Read online free Finite Volumes For Complex Applications Vii Methods And Theoretical Aspects ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects

Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects
Author :
Publisher : Springer
Total Pages : 450
Release :
ISBN-10 : 9783319056845
ISBN-13 : 3319056840
Rating : 4/5 (840 Downloads)

Book Synopsis Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects by : Jürgen Fuhrmann

Download or read book Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects written by Jürgen Fuhrmann and published by Springer. This book was released on 2014-05-12 with total page 450 pages. Available in PDF, EPUB and Kindle. Book excerpt: The first volume of the proceedings of the 7th conference on "Finite Volumes for Complex Applications" (Berlin, June 2014) covers topics that include convergence and stability analysis, as well as investigations of these methods from the point of view of compatibility with physical principles. It collects together the focused invited papers, as well as the reviewed contributions from internationally leading researchers in the field of analysis of finite volume and related methods. Altogether, a rather comprehensive overview is given of the state of the art in the field. The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation. Recent decades have brought significant success in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications. Researchers, PhD and masters level students in numerical analysis, scientific computing and related fields such as partial differential equations will find this volume useful, as will engineers working in numerical modeling and simulations.


Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects Related Books