Harmonic Analysis On Symmetric Spaces Euclidean Space The Sphere And The Poincare Upper Half Plane

Download Harmonic Analysis On Symmetric Spaces Euclidean Space The Sphere And The Poincare Upper Half Plane full books in PDF, epub, and Kindle. Read online free Harmonic Analysis On Symmetric Spaces Euclidean Space The Sphere And The Poincare Upper Half Plane ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane

Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane
Author :
Publisher : Springer Science & Business Media
Total Pages : 430
Release :
ISBN-10 : 9781461479727
ISBN-13 : 146147972X
Rating : 4/5 (72X Downloads)

Book Synopsis Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane by : Audrey Terras

Download or read book Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane written by Audrey Terras and published by Springer Science & Business Media. This book was released on 2013-09-12 with total page 430 pages. Available in PDF, EPUB and Kindle. Book excerpt: This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering. Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues. Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.


Harmonic Analysis on Symmetric Spaces—Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane Related Books