Hyperbolic Partial Differential Equations

Download Hyperbolic Partial Differential Equations full books in PDF, epub, and Kindle. Read online free Hyperbolic Partial Differential Equations ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Hyperbolic Partial Differential Equations

Hyperbolic Partial Differential Equations
Author :
Publisher : American Mathematical Soc.
Total Pages : 234
Release :
ISBN-10 : 9780821835760
ISBN-13 : 0821835769
Rating : 4/5 (769 Downloads)

Book Synopsis Hyperbolic Partial Differential Equations by : Peter D. Lax

Download or read book Hyperbolic Partial Differential Equations written by Peter D. Lax and published by American Mathematical Soc.. This book was released on 2006 with total page 234 pages. Available in PDF, EPUB and Kindle. Book excerpt: The theory of hyperbolic equations is a large subject, and its applications are many: fluid dynamics and aerodynamics, the theory of elasticity, optics, electromagnetic waves, direct and inverse scattering, and the general theory of relativity. This book is an introduction to most facets of the theory and is an ideal text for a second-year graduate course on the subject. The first part deals with the basic theory: the relation of hyperbolicity to the finite propagation of signals, the concept and role of characteristic surfaces and rays, energy, and energy inequalities. The structure of solutions of equations with constant coefficients is explored with the help of the Fourier and Radon transforms. The existence of solutions of equations with variable coefficients with prescribed initial values is proved using energy inequalities. The propagation of singularities is studied with the help of progressing waves. The second part describes finite difference approximations of hyperbolic equations, presents a streamlined version of the Lax-Phillips scattering theory, and covers basic concepts and results for hyperbolic systems of conservation laws, an active research area today. Four brief appendices sketch topics that are important or amusing, such as Huygens' principle and a theory of mixed initial and boundary value problems. A fifth appendix by Cathleen Morawetz describes a nonstandard energy identity and its uses. -- Back cover.


Hyperbolic Partial Differential Equations Related Books

Hyperbolic Partial Differential Equations
Language: en
Pages: 234
Authors: Peter D. Lax
Categories: Mathematics
Type: BOOK - Published: 2006 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

The theory of hyperbolic equations is a large subject, and its applications are many: fluid dynamics and aerodynamics, the theory of elasticity, optics, electro
Hyperbolic Partial Differential Equations
Language: en
Pages: 159
Authors: Serge Alinhac
Categories: Mathematics
Type: BOOK - Published: 2009-06-17 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

This excellent introduction to hyperbolic differential equations is devoted to linear equations and symmetric systems, as well as conservation laws. The book is
Hyperbolic Partial Differential Equations
Language: en
Pages: 329
Authors: Andreas Meister
Categories: Mathematics
Type: BOOK - Published: 2012-12-06 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

The book gives an introduction to the fundamental properties of hyperbolic partial differential equations und their appearance in the mathematical modelling of
Hyperbolic Partial Differential Equations and Geometric Optics
Language: en
Pages: 386
Authors: Jeffrey Rauch
Categories: Mathematics
Type: BOOK - Published: 2012-05-01 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

This book introduces graduate students and researchers in mathematics and the sciences to the multifaceted subject of the equations of hyperbolic type, which ar
Hyperbolic Partial Differential Equations and Wave Phenomena
Language: en
Pages: 218
Authors: Mitsuru Ikawa
Categories: Mathematics
Type: BOOK - Published: 2000 - Publisher: American Mathematical Soc.

DOWNLOAD EBOOK

The familiar wave equation is the most fundamental hyperbolic partial differential equation. Other hyperbolic equations, both linear and nonlinear, exhibit many