Mechanisms of ion channels voltage-dependency
Author | : Gildas Loussouarn |
Publisher | : Frontiers E-books |
Total Pages | : 211 |
Release | : |
ISBN-10 | : 9782889191154 |
ISBN-13 | : 288919115X |
Rating | : 4/5 (15X Downloads) |
Download or read book Mechanisms of ion channels voltage-dependency written by Gildas Loussouarn and published by Frontiers E-books. This book was released on with total page 211 pages. Available in PDF, EPUB and Kindle. Book excerpt: Voltage-gated ion channels are transmembrane proteins in which at least one gate is controlled by the transmembrane potential. They are frequently very selectively permeable to sodium (Nav channels), potassium (Kv channels) or calcium (Cav channels) ions. Depending on the channels, opening of the activation gate is triggered by membrane depolarization (Kv, Nav and Cav channels) or hyperpolarization (HCN channels for instance). In addition, in many voltage-gated channels, a so-called inactivation gate is also present. Compared to the activation gate, the latter is oppositely coupled to the potential: In Kv, Nav and Cav channels, upon membrane depolarization, the inactivation gate closes whereas the activation gate opens. Depending on the cell types in which they are expressed and their physiological role, various voltage-dependent channels can be characterized by their conductance, ion selectivity, pharmacology and voltage-sensitivity. These properties are mainly dictated by the amino-acids sequence and structure of the pore forming subunit(s), presence of accessory subunit(s), membrane composition, intra- and extracellular ions concentration. Noteworthy, despite a profound variety of these ion channels characteristics, it seems that most of them obey to the same global, four-fold structure now obtained by several X-ray crystallography experiments. Given the wealth of electrophysiological, biochemical, optical, and structural data regarding ion channels voltage-dependency, we decided to put together in this e-book, up to date reviews describing the molecular details of these complex voltage-gated channels.