Modular Nonlinear Characterization System And Large Signal Behavioral Modelling Of Unmatched Transistors For Streamlined Power Amplifier Design

Download Modular Nonlinear Characterization System And Large Signal Behavioral Modelling Of Unmatched Transistors For Streamlined Power Amplifier Design full books in PDF, epub, and Kindle. Read online free Modular Nonlinear Characterization System And Large Signal Behavioral Modelling Of Unmatched Transistors For Streamlined Power Amplifier Design ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Modular Nonlinear Characterization System and Large-signal Behavioral Modelling of Unmatched Transistors for Streamlined Power Amplifier Design

Modular Nonlinear Characterization System and Large-signal Behavioral Modelling of Unmatched Transistors for Streamlined Power Amplifier Design
Author :
Publisher :
Total Pages : 176
Release :
ISBN-10 : OCLC:988133107
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Modular Nonlinear Characterization System and Large-signal Behavioral Modelling of Unmatched Transistors for Streamlined Power Amplifier Design by : Dylan Bespalko

Download or read book Modular Nonlinear Characterization System and Large-signal Behavioral Modelling of Unmatched Transistors for Streamlined Power Amplifier Design written by Dylan Bespalko and published by . This book was released on 2016 with total page 176 pages. Available in PDF, EPUB and Kindle. Book excerpt: This thesis provides a comprehensive approach to the characterization and modelling of large-signal nonlinear RF/microwave devices, circuits and systems. This research is moti- vated by the increased linearity and power-efficiency requirements of modern power ampli- fier technology for wireless communications. For instance, maximizing the power amplifier's efficiency can only be achieved by operating RF transistors under strong nonlinear condi- tions, however this is contradictory to maximizing PA linearity. Simultaneously designing for efficiency and linearity is a challenging trade-off in today's fragmented design process, therefore the advancement of computer-aided design (CAD) tools is essential for achieving an optimal solution. The successful and effective CAD tool based PA design relies on the availability of accurate nonlinear models to mimic the electro-thermal behaviour of RF transistors. The accuracy of these models depends on three factors: 1. The formulation of the model. 2. The model extraction procedure. 3. The accuracy of the measurement data. While prior work focuses separately on the improved model formulations or improving characterization accuracy, this thesis provides a comprehensive analysis of all three factors. This thesis proposes a modular large-signal RF device characterization system, and a non- linear behavioral model capable of handling strongly nonlinear unmatched RF transistors, each necessary to streamline the design process and achieve a first-pass PA design. iii As a first step, a large-signal characterization system has been developed to measure the multi-harmonic frequency response of RF transistors and has the ability to i) Perform high-power measurements, ii) Characterize unmatched transistors, iii) Operate the DUT under any possible operating condition, iv) Synthesize any multi-harmonic stimulus, and v) Reconstruct the time-domain I/V waveforms at the ports of the DUT. The proposed characterization system eliminates fragmentation between measurement and simulation environments by providing seamless integration with Harmonic Balance simulations. This provides a common framework that integrates all steps of the PA design process from device-level characterization, to circuit-level measurement and validation. This system is implemented using modular instruments consisting of mixer-based receivers, arbitrary waveform generators, impedance tuners, and a multi-harmonic phase-coherent reference source. It also integrates sequential calibration routines to provide receiver, port match, and source-power corrections to the DUT measurement plane and measurement routines for automated data collection. The second part of the thesis researches black-box frequency-domain behavioral mod- els that can approximate strongly nonlinear, unmatched devices. Our investigation yielded two complimentary solutions to ensure the targeted modelling accuracy. First, improving the accuracy of a first-order expansion-based Poly-Harmonic Distortion (PHD) model by 5dB, in terms of Normalized Mean-Squared Error (NMSE), by minimizing multi-harmonic reflections that artificially increase the order of the nonlinear system. While this addresses the fictitious need for higher-order models due to the deficiencies in the model extraction procedure, strongly nonlinear devices will require high-order models to achieve the targeted accuracy over a larger measurement distribution. Hence, a variable order Multi-Harmonic Volterra (MHV) model is proposed to extend the PHD model formulation to strong non- linear devices. This model is extracted by utilizing the proposed characterization system to extract higher-order multi-variate model coefficients not included in the PHD model. The resulting model improves DC drain current prediction by 5dB and improves funda- mental output-power prediction by 2dB. The MHV model improves the vector power-gain prediction by 3.4dB in realistic PA design applications, thereby providing better emulation of linearization techniques within a simulation environment. Finally, a concurrent dual-band PA design is studied as an example of how the pro- iv posed nonlinear characterization system and behavioural modelling approach can be used to enable complex PA designs. First, a 10W Class-AB PA is designed using dual-band matching-network theory, however it is difficult to implement because the design technique does not control the matching fractional bandwidth as a design parameter. Therefore, an alternative Class-J 45W dual-band PA was designed using a low-impedance matching network, combined with a trans-impedance dual-band filter. Although the dual-band PA can achieve comparable performance to an equivalent single-band PA at each separate fre- quency, further development of characterization, modeling, and circuit design techniques is needed to achieve high-efficiency during concurrent operation.


Modular Nonlinear Characterization System and Large-signal Behavioral Modelling of Unmatched Transistors for Streamlined Power Amplifier Design Related Books

Modular Nonlinear Characterization System and Large-signal Behavioral Modelling of Unmatched Transistors for Streamlined Power Amplifier Design
Language: en
Pages: 176
Authors: Dylan Bespalko
Categories: Amplifiers (Electronics)
Type: BOOK - Published: 2016 - Publisher:

DOWNLOAD EBOOK

This thesis provides a comprehensive approach to the characterization and modelling of large-signal nonlinear RF/microwave devices, circuits and systems. This r
Analysis of Power Transistor Behavioural Modeling Techniques Suitable for Narrow-band Power Amplifier Design
Language: en
Pages: 94
Authors: Amir-Reza Amini
Categories:
Type: BOOK - Published: 2012 - Publisher:

DOWNLOAD EBOOK

The design of power amplifiers within a circuit simulator requires a good non-linear model that accurately predicts the electormagnetic behaviour of the power t
Behavioral Modeling of Unmatched Nonlinear Devices Driven with Modulated Signal Stimuli Using Volterra Series
Language: en
Pages: 55
Authors: Marwen Ben Rejeb
Categories:
Type: BOOK - Published: 2014 - Publisher:

DOWNLOAD EBOOK

The accurate simulation of nonlinear radio frequency (RF) circuits under unmatched impedance conditions depends heavily on the device model used. Recently, meas
Nonlinear Transistor Model Parameter Extraction Techniques
Language: en
Pages: 367
Authors: Matthias Rudolph
Categories: Technology & Engineering
Type: BOOK - Published: 2011-10-13 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

Achieve accurate and reliable parameter extraction using this complete survey of state-of-the-art techniques and methods. A team of experts from industry and ac
Vector corrected non-linear transistor characterization
Language: en
Pages:
Authors:
Categories:
Type: BOOK - Published: 1909 - Publisher:

DOWNLOAD EBOOK

An on-wafer microwave characterization system has been developed that allows for both 'frequency domain' swept frequency fixed power small signal s-parameter me