Stochastic Numerics For Mathematical Physics

Download Stochastic Numerics For Mathematical Physics full books in PDF, epub, and Kindle. Read online free Stochastic Numerics For Mathematical Physics ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Stochastic Numerics for Mathematical Physics

Stochastic Numerics for Mathematical Physics
Author :
Publisher : Springer Nature
Total Pages : 754
Release :
ISBN-10 : 9783030820404
ISBN-13 : 3030820408
Rating : 4/5 (408 Downloads)

Book Synopsis Stochastic Numerics for Mathematical Physics by : Grigori N. Milstein

Download or read book Stochastic Numerics for Mathematical Physics written by Grigori N. Milstein and published by Springer Nature. This book was released on 2021-12-03 with total page 754 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is a substantially revised and expanded edition reflecting major developments in stochastic numerics since the first edition was published in 2004. The new topics, in particular, include mean-square and weak approximations in the case of nonglobally Lipschitz coefficients of Stochastic Differential Equations (SDEs) including the concept of rejecting trajectories; conditional probabilistic representations and their application to practical variance reduction using regression methods; multi-level Monte Carlo method; computing ergodic limits and additional classes of geometric integrators used in molecular dynamics; numerical methods for FBSDEs; approximation of parabolic SPDEs and nonlinear filtering problem based on the method of characteristics. SDEs have many applications in the natural sciences and in finance. Besides, the employment of probabilistic representations together with the Monte Carlo technique allows us to reduce the solution of multi-dimensional problems for partial differential equations to the integration of stochastic equations. This approach leads to powerful computational mathematics that is presented in the treatise. Many special schemes for SDEs are presented. In the second part of the book numerical methods for solving complicated problems for partial differential equations occurring in practical applications, both linear and nonlinear, are constructed. All the methods are presented with proofs and hence founded on rigorous reasoning, thus giving the book textbook potential. An overwhelming majority of the methods are accompanied by the corresponding numerical algorithms which are ready for implementation in practice. The book addresses researchers and graduate students in numerical analysis, applied probability, physics, chemistry, and engineering as well as mathematical biology and financial mathematics.


Stochastic Numerics for Mathematical Physics Related Books