A Derivative Free Two Level Random Search Method For Unconstrained Optimization

Download A Derivative Free Two Level Random Search Method For Unconstrained Optimization full books in PDF, epub, and Kindle. Read online free A Derivative Free Two Level Random Search Method For Unconstrained Optimization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

A Derivative-free Two Level Random Search Method for Unconstrained Optimization

A Derivative-free Two Level Random Search Method for Unconstrained Optimization
Author :
Publisher : Springer Nature
Total Pages : 126
Release :
ISBN-10 : 9783030685171
ISBN-13 : 3030685179
Rating : 4/5 (179 Downloads)

Book Synopsis A Derivative-free Two Level Random Search Method for Unconstrained Optimization by : Neculai Andrei

Download or read book A Derivative-free Two Level Random Search Method for Unconstrained Optimization written by Neculai Andrei and published by Springer Nature. This book was released on 2021-03-31 with total page 126 pages. Available in PDF, EPUB and Kindle. Book excerpt: The book is intended for graduate students and researchers in mathematics, computer science, and operational research. The book presents a new derivative-free optimization method/algorithm based on randomly generated trial points in specified domains and where the best ones are selected at each iteration by using a number of rules. This method is different from many other well established methods presented in the literature and proves to be competitive for solving many unconstrained optimization problems with different structures and complexities, with a relative large number of variables. Intensive numerical experiments with 140 unconstrained optimization problems, with up to 500 variables, have shown that this approach is efficient and robust. Structured into 4 chapters, Chapter 1 is introductory. Chapter 2 is dedicated to presenting a two level derivative-free random search method for unconstrained optimization. It is assumed that the minimizing function is continuous, lower bounded and its minimum value is known. Chapter 3 proves the convergence of the algorithm. In Chapter 4, the numerical performances of the algorithm are shown for solving 140 unconstrained optimization problems, out of which 16 are real applications. This shows that the optimization process has two phases: the reduction phase and the stalling one. Finally, the performances of the algorithm for solving a number of 30 large-scale unconstrained optimization problems up to 500 variables are presented. These numerical results show that this approach based on the two level random search method for unconstrained optimization is able to solve a large diversity of problems with different structures and complexities. There are a number of open problems which refer to the following aspects: the selection of the number of trial or the number of the local trial points, the selection of the bounds of the domains where the trial points and the local trial points are randomly generated and a criterion for initiating the line search.


A Derivative-free Two Level Random Search Method for Unconstrained Optimization Related Books

A Derivative-free Two Level Random Search Method for Unconstrained Optimization
Language: en
Pages: 126
Authors: Neculai Andrei
Categories: Mathematics
Type: BOOK - Published: 2021-03-31 - Publisher: Springer Nature

DOWNLOAD EBOOK

The book is intended for graduate students and researchers in mathematics, computer science, and operational research. The book presents a new derivative-free o
Nonlinear Optimization Applications Using the GAMS Technology
Language: en
Pages: 356
Authors: Neculai Andrei
Categories: Mathematics
Type: BOOK - Published: 2013-06-22 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Here is a collection of nonlinear optimization applications from the real world, expressed in the General Algebraic Modeling System (GAMS). The concepts are pre
Derivative-Free and Blackbox Optimization
Language: en
Pages: 307
Authors: Charles Audet
Categories: Mathematics
Type: BOOK - Published: 2017-12-02 - Publisher: Springer

DOWNLOAD EBOOK

This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization. Th
Introduction to Derivative-Free Optimization
Language: en
Pages: 276
Authors: Andrew R. Conn
Categories: Mathematics
Type: BOOK - Published: 2009-04-16 - Publisher: SIAM

DOWNLOAD EBOOK

The first contemporary comprehensive treatment of optimization without derivatives. This text explains how sampling and model techniques are used in derivative-
Algorithms for Optimization
Language: en
Pages: 521
Authors: Mykel J. Kochenderfer
Categories: Computers
Type: BOOK - Published: 2019-03-12 - Publisher: MIT Press

DOWNLOAD EBOOK

A comprehensive introduction to optimization with a focus on practical algorithms for the design of engineering systems. This book offers a comprehensive introd