An Introduction To Causal Inference

Download An Introduction To Causal Inference full books in PDF, epub, and Kindle. Read online free An Introduction To Causal Inference ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

An Introduction to Causal Inference

An Introduction to Causal Inference
Author :
Publisher : Createspace Independent Publishing Platform
Total Pages : 0
Release :
ISBN-10 : 1507894295
ISBN-13 : 9781507894293
Rating : 4/5 (293 Downloads)

Book Synopsis An Introduction to Causal Inference by : Judea Pearl

Download or read book An Introduction to Causal Inference written by Judea Pearl and published by Createspace Independent Publishing Platform. This book was released on 2015 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical analysis to causal analysis of multivariate data. Special emphasis is placed on the assumptions that underly all causal inferences, the languages used in formulating those assumptions, the conditional nature of all causal and counterfactual claims, and the methods that have been developed for the assessment of such claims. These advances are illustrated using a general theory of causation based on the Structural Causal Model (SCM) described in Pearl (2000a), which subsumes and unifies other approaches to causation, and provides a coherent mathematical foundation for the analysis of causes and counterfactuals. In particular, the paper surveys the development of mathematical tools for inferring (from a combination of data and assumptions) answers to three types of causal queries: (1) queries about the effects of potential interventions, (also called "causal effects" or "policy evaluation") (2) queries about probabilities of counterfactuals, (including assessment of "regret," "attribution" or "causes of effects") and (3) queries about direct and indirect effects (also known as "mediation"). Finally, the paper defines the formal and conceptual relationships between the structural and potential-outcome frameworks and presents tools for a symbiotic analysis that uses the strong features of both. The tools are demonstrated in the analyses of mediation, causes of effects, and probabilities of causation. -- p. 1.


An Introduction to Causal Inference Related Books

An Introduction to Causal Inference
Language: en
Pages: 0
Authors: Judea Pearl
Categories: Causation
Type: BOOK - Published: 2015 - Publisher: Createspace Independent Publishing Platform

DOWNLOAD EBOOK

This paper summarizes recent advances in causal inference and underscores the paradigmatic shifts that must be undertaken in moving from traditional statistical
Observation and Experiment
Language: en
Pages: 395
Authors: Paul Rosenbaum
Categories: Mathematics
Type: BOOK - Published: 2017-08-14 - Publisher: Harvard University Press

DOWNLOAD EBOOK

A daily glass of wine prolongs life—yet alcohol can cause life-threatening cancer. Some say raising the minimum wage will decrease inequality while others say
Causal Inference
Language: en
Pages: 585
Authors: Scott Cunningham
Categories: Business & Economics
Type: BOOK - Published: 2021-01-26 - Publisher: Yale University Press

DOWNLOAD EBOOK

An accessible, contemporary introduction to the methods for determining cause and effect in the Social Sciences “Causation versus correlation has been the bas
Elements of Causal Inference
Language: en
Pages: 289
Authors: Jonas Peters
Categories: Computers
Type: BOOK - Published: 2017-11-29 - Publisher: MIT Press

DOWNLOAD EBOOK

A concise and self-contained introduction to causal inference, increasingly important in data science and machine learning. The mathematization of causality is
Fundamentals of Causal Inference
Language: en
Pages: 248
Authors: Babette A. Brumback
Categories: Mathematics
Type: BOOK - Published: 2021-11-10 - Publisher: CRC Press

DOWNLOAD EBOOK

One of the primary motivations for clinical trials and observational studies of humans is to infer cause and effect. Disentangling causation from confounding is