Bayesian Models

Download Bayesian Models full books in PDF, epub, and Kindle. Read online free Bayesian Models ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Bayesian Models

Bayesian Models
Author :
Publisher : Princeton University Press
Total Pages : 315
Release :
ISBN-10 : 9781400866557
ISBN-13 : 1400866553
Rating : 4/5 (553 Downloads)

Book Synopsis Bayesian Models by : N. Thompson Hobbs

Download or read book Bayesian Models written by N. Thompson Hobbs and published by Princeton University Press. This book was released on 2015-08-04 with total page 315 pages. Available in PDF, EPUB and Kindle. Book excerpt: Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach. Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals. This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management. Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticians Covers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and more Deemphasizes computer coding in favor of basic principles Explains how to write out properly factored statistical expressions representing Bayesian models


Bayesian Models Related Books

Bayesian Models
Language: en
Pages: 315
Authors: N. Thompson Hobbs
Categories: Science
Type: BOOK - Published: 2015-08-04 - Publisher: Princeton University Press

DOWNLOAD EBOOK

Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way
Bayesian Modeling and Computation in Python
Language: en
Pages: 420
Authors: Osvaldo A. Martin
Categories: Computers
Type: BOOK - Published: 2021-12-28 - Publisher: CRC Press

DOWNLOAD EBOOK

Bayesian Modeling and Computation in Python aims to help beginner Bayesian practitioners to become intermediate modelers. It uses a hands on approach with PyMC3
Bayes Rules!
Language: en
Pages: 606
Authors: Alicia A. Johnson
Categories: Mathematics
Type: BOOK - Published: 2022-03-03 - Publisher: CRC Press

DOWNLOAD EBOOK

Praise for Bayes Rules!: An Introduction to Applied Bayesian Modeling “A thoughtful and entertaining book, and a great way to get started with Bayesian analys
Bayesian Modeling Using WinBUGS
Language: en
Pages: 477
Authors: Ioannis Ntzoufras
Categories: Mathematics
Type: BOOK - Published: 2011-09-20 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

A hands-on introduction to the principles of Bayesian modeling using WinBUGS Bayesian Modeling Using WinBUGS provides an easily accessible introduction to the u
Spatial and Spatio-temporal Bayesian Models with R - INLA
Language: en
Pages: 322
Authors: Marta Blangiardo
Categories: Mathematics
Type: BOOK - Published: 2015-06-02 - Publisher: John Wiley & Sons

DOWNLOAD EBOOK

Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian me