Deep Learning On Windows

Download Deep Learning On Windows full books in PDF, epub, and Kindle. Read online free Deep Learning On Windows ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Deep Learning on Windows

Deep Learning on Windows
Author :
Publisher : Apress
Total Pages : 235
Release :
ISBN-10 : 1484264304
ISBN-13 : 9781484264300
Rating : 4/5 (300 Downloads)

Book Synopsis Deep Learning on Windows by : Thimira Amaratunga

Download or read book Deep Learning on Windows written by Thimira Amaratunga and published by Apress. This book was released on 2021-02-25 with total page 235 pages. Available in PDF, EPUB and Kindle. Book excerpt: Build deep learning and computer vision systems using Python, TensorFlow, Keras, OpenCV, and more, right within the familiar environment of Microsoft Windows. The book starts with an introduction to tools for deep learning and computer vision tasks followed by instructions to install, configure, and troubleshoot them. Here, you will learn how Python can help you build deep learning models on Windows. Moving forward, you will build a deep learning model and understand the internal workings of a convolutional neural network on Windows. Further, you will go through different ways to visualize the internal workings of deep learning models along with an understanding of transfer learning where you will learn how to build a model architecture and use data augmentations. Next, you will manage and train deep learning models on Windows before deploying your application as a web application. You’ll also do some basic image processing and work with computer vision options that will help you build various applications with deep learning. Finally, you will use generative adversarial networks along with reinforcement learning. After reading Deep Learning on Windows, you will be able to design deep learning models and web applications on the Windows operating system. What You Will Learn Get deep learning tools working on Microsoft Windows Understand model visualization techniques, such as the built-in plot_model function of Keras and third-party visualization tools Build a robust training script Convert your deep learning model into a web application Generate handwritten digits with DCGAN (deep convolutional generative adversarial network) Understand the basics of reinforcement learning Who This Book Is For AI developers and enthusiasts wanting to work on the Windows platform.


Deep Learning on Windows Related Books

Deep Learning on Windows
Language: en
Pages: 235
Authors: Thimira Amaratunga
Categories: Computers
Type: BOOK - Published: 2021-02-25 - Publisher: Apress

DOWNLOAD EBOOK

Build deep learning and computer vision systems using Python, TensorFlow, Keras, OpenCV, and more, right within the familiar environment of Microsoft Windows. T
Deep Learning for Coders with fastai and PyTorch
Language: en
Pages: 624
Authors: Jeremy Howard
Categories: Computers
Type: BOOK - Published: 2020-06-29 - Publisher: O'Reilly Media

DOWNLOAD EBOOK

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with
Deep Learning
Language: en
Pages: 212
Authors: Li Deng
Categories: Machine learning
Type: BOOK - Published: 2014 - Publisher:

DOWNLOAD EBOOK

Provides an overview of general deep learning methodology and its applications to a variety of signal and information processing tasks
Deep Learning
Language: en
Pages: 801
Authors: Ian Goodfellow
Categories: Computers
Type: BOOK - Published: 2016-11-10 - Publisher: MIT Press

DOWNLOAD EBOOK

An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and res
Pattern Recognition and Machine Learning
Language: en
Pages: 0
Authors: Christopher M. Bishop
Categories: Computers
Type: BOOK - Published: 2016-08-23 - Publisher: Springer

DOWNLOAD EBOOK

This is the first textbook on pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that permit fast approxi