Derivative Free And Blackbox Optimization

Download Derivative Free And Blackbox Optimization full books in PDF, epub, and Kindle. Read online free Derivative Free And Blackbox Optimization ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Derivative-Free and Blackbox Optimization

Derivative-Free and Blackbox Optimization
Author :
Publisher : Springer
Total Pages : 307
Release :
ISBN-10 : 9783319689135
ISBN-13 : 3319689134
Rating : 4/5 (134 Downloads)

Book Synopsis Derivative-Free and Blackbox Optimization by : Charles Audet

Download or read book Derivative-Free and Blackbox Optimization written by Charles Audet and published by Springer. This book was released on 2017-12-02 with total page 307 pages. Available in PDF, EPUB and Kindle. Book excerpt: This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization. The book is split into 5 parts and is designed to be modular; any individual part depends only on the material in Part I. Part I of the book discusses what is meant by Derivative-Free and Blackbox Optimization, provides background material, and early basics while Part II focuses on heuristic methods (Genetic Algorithms and Nelder-Mead). Part III presents direct search methods (Generalized Pattern Search and Mesh Adaptive Direct Search) and Part IV focuses on model-based methods (Simplex Gradient and Trust Region). Part V discusses dealing with constraints, using surrogates, and bi-objective optimization. End of chapter exercises are included throughout as well as 15 end of chapter projects and over 40 figures. Benchmarking techniques are also presented in the appendix.


Derivative-Free and Blackbox Optimization Related Books

Derivative-Free and Blackbox Optimization
Language: en
Pages: 307
Authors: Charles Audet
Categories: Mathematics
Type: BOOK - Published: 2017-12-02 - Publisher: Springer

DOWNLOAD EBOOK

This book is designed as a textbook, suitable for self-learning or for teaching an upper-year university course on derivative-free and blackbox optimization. Th
Introduction to Derivative-Free Optimization
Language: en
Pages: 276
Authors: Andrew R. Conn
Categories: Mathematics
Type: BOOK - Published: 2009-04-16 - Publisher: SIAM

DOWNLOAD EBOOK

The first contemporary comprehensive treatment of optimization without derivatives. This text explains how sampling and model techniques are used in derivative-
Computational Optimization, Methods and Algorithms
Language: en
Pages: 292
Authors: Slawomir Koziel
Categories: Technology & Engineering
Type: BOOK - Published: 2011-06-17 - Publisher: Springer

DOWNLOAD EBOOK

Computational optimization is an important paradigm with a wide range of applications. In virtually all branches of engineering and industry, we almost always t
Implicit Filtering
Language: en
Pages: 171
Authors: C. T. Kelley
Categories: Mathematics
Type: BOOK - Published: 2011-09-29 - Publisher: SIAM

DOWNLOAD EBOOK

A description of the implicit filtering algorithm, its convergence theory and a new MATLABĀ® implementation.
Engineering Design Optimization
Language: en
Pages: 653
Authors: Joaquim R. R. A. Martins
Categories: Mathematics
Type: BOOK - Published: 2021-11-18 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

Based on course-tested material, this rigorous yet accessible graduate textbook covers both fundamental and advanced optimization theory and algorithms. It cove