Differential Equations on Measures and Functional Spaces
Author | : Vassili Kolokoltsov |
Publisher | : Springer |
Total Pages | : 536 |
Release | : 2019-06-20 |
ISBN-10 | : 9783030033774 |
ISBN-13 | : 3030033775 |
Rating | : 4/5 (775 Downloads) |
Download or read book Differential Equations on Measures and Functional Spaces written by Vassili Kolokoltsov and published by Springer. This book was released on 2019-06-20 with total page 536 pages. Available in PDF, EPUB and Kindle. Book excerpt: This advanced book focuses on ordinary differential equations (ODEs) in Banach and more general locally convex spaces, most notably the ODEs on measures and various function spaces. It briefly discusses the fundamentals before moving on to the cutting edge research in linear and nonlinear partial and pseudo-differential equations, general kinetic equations and fractional evolutions. The level of generality chosen is suitable for the study of the most important nonlinear equations of mathematical physics, such as Boltzmann, Smoluchovskii, Vlasov, Landau-Fokker-Planck, Cahn-Hilliard, Hamilton-Jacobi-Bellman, nonlinear Schroedinger, McKean-Vlasov diffusions and their nonlocal extensions, mass-action-law kinetics from chemistry. It also covers nonlinear evolutions arising in evolutionary biology and mean-field games, optimization theory, epidemics and system biology, in general models of interacting particles or agents describing splitting and merging, collisions and breakage, mutations and the preferential-attachment growth on networks. The book is intended mainly for upper undergraduate and graduate students, but is also of use to researchers in differential equations and their applications. It particularly highlights the interconnections between various topics revealing where and how a particular result is used in other chapters or may be used in other contexts, and also clarifies the links between the languages of pseudo-differential operators, generalized functions, operator theory, abstract linear spaces, fractional calculus and path integrals.