Fractal Geometry And Number Theory

Download Fractal Geometry And Number Theory full books in PDF, epub, and Kindle. Read online free Fractal Geometry And Number Theory ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Fractal Geometry and Number Theory

Fractal Geometry and Number Theory
Author :
Publisher : Springer Science & Business Media
Total Pages : 277
Release :
ISBN-10 : 9781461253143
ISBN-13 : 1461253144
Rating : 4/5 (144 Downloads)

Book Synopsis Fractal Geometry and Number Theory by : Michel L. Lapidus

Download or read book Fractal Geometry and Number Theory written by Michel L. Lapidus and published by Springer Science & Business Media. This book was released on 2013-12-01 with total page 277 pages. Available in PDF, EPUB and Kindle. Book excerpt: A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo metry) of the drum and its sound (its spectrum). In this book, we restrict ourselves to the one-dimensional case of fractal strings, and their higher dimensional analogues, fractal sprays. We develop a theory of complex di mensions of a fractal string, and we study how these complex dimensions relate the geometry with the spectrum of the fractal string. We refer the reader to [Berrl-2, Lapl-4, LapPol-3, LapMal-2, HeLapl-2] and the ref erences therein for further physical and mathematical motivations of this work. (Also see, in particular, Sections 7. 1, 10. 3 and 10. 4, along with Ap pendix B.) In Chapter 1, we introduce the basic object of our research, fractal strings (see [Lapl-3, LapPol-3, LapMal-2, HeLapl-2]). A 'standard fractal string' is a bounded open subset of the real line. Such a set is a disjoint union of open intervals, the lengths of which form a sequence which we assume to be infinite. Important information about the geometry of . c is contained in its geometric zeta function (c(8) = L lj. j=l 2 Introduction We assume throughout that this function has a suitable meromorphic ex tension. The central notion of this book, the complex dimensions of a fractal string . c, is defined as the poles of the meromorphic extension of (c.


Fractal Geometry and Number Theory Related Books

Fractal Geometry and Number Theory
Language: en
Pages: 277
Authors: Michel L. Lapidus
Categories: Mathematics
Type: BOOK - Published: 2013-12-01 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

A fractal drum is a bounded open subset of R. m with a fractal boundary. A difficult problem is to describe the relationship between the shape (geo metry) of th
Fractal Geometry, Complex Dimensions and Zeta Functions
Language: en
Pages: 583
Authors: Michel L. Lapidus
Categories: Mathematics
Type: BOOK - Published: 2012-09-20 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional dru
Quantized Number Theory, Fractal Strings And The Riemann Hypothesis: From Spectral Operators To Phase Transitions And Universality
Language: en
Pages: 494
Authors: Hafedh Herichi
Categories: Mathematics
Type: BOOK - Published: 2021-07-27 - Publisher: World Scientific

DOWNLOAD EBOOK

Studying the relationship between the geometry, arithmetic and spectra of fractals has been a subject of significant interest in contemporary mathematics. This
The Geometry of Fractal Sets
Language: en
Pages: 184
Authors: K. J. Falconer
Categories: Mathematics
Type: BOOK - Published: 1985 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

A mathematical study of the geometrical aspects of sets of both integral and fractional Hausdorff dimension. Considers questions of local density, the existence
Measure, Topology, and Fractal Geometry
Language: en
Pages: 252
Authors: Gerald A. Edgar
Categories: Mathematics
Type: BOOK - Published: 2013-04-17 - Publisher: Springer Science & Business Media

DOWNLOAD EBOOK

From the reviews: "In the world of mathematics, the 1980's might well be described as the "decade of the fractal". Starting with Benoit Mandelbrot's remarkable