Graph Representation Learning

Download Graph Representation Learning full books in PDF, epub, and Kindle. Read online free Graph Representation Learning ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Graph Representation Learning

Graph Representation Learning
Author :
Publisher : Springer Nature
Total Pages : 141
Release :
ISBN-10 : 9783031015885
ISBN-13 : 3031015886
Rating : 4/5 (886 Downloads)

Book Synopsis Graph Representation Learning by : William L. William L. Hamilton

Download or read book Graph Representation Learning written by William L. William L. Hamilton and published by Springer Nature. This book was released on 2022-06-01 with total page 141 pages. Available in PDF, EPUB and Kindle. Book excerpt: Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.


Graph Representation Learning Related Books

Graph Representation Learning
Language: en
Pages: 141
Authors: William L. William L. Hamilton
Categories: Computers
Type: BOOK - Published: 2022-06-01 - Publisher: Springer Nature

DOWNLOAD EBOOK

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational induct
Graph Neural Networks: Foundations, Frontiers, and Applications
Language: en
Pages: 701
Authors: Lingfei Wu
Categories: Computers
Type: BOOK - Published: 2022-01-03 - Publisher: Springer Nature

DOWNLOAD EBOOK

Deep Learning models are at the core of artificial intelligence research today. It is well known that deep learning techniques are disruptive for Euclidean data
Graph Machine Learning
Language: en
Pages: 338
Authors: Claudio Stamile
Categories: Computers
Type: BOOK - Published: 2021-06-25 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Build machine learning algorithms using graph data and efficiently exploit topological information within your models Key Features Implement machine learning te
Deep Learning on Graphs
Language: en
Pages: 339
Authors: Yao Ma
Categories: Computers
Type: BOOK - Published: 2021-09-23 - Publisher: Cambridge University Press

DOWNLOAD EBOOK

A comprehensive text on foundations and techniques of graph neural networks with applications in NLP, data mining, vision and healthcare.
Introduction to Graph Neural Networks
Language: en
Pages: 109
Authors: Zhiyuan Zhiyuan Liu
Categories: Computers
Type: BOOK - Published: 2022-05-31 - Publisher: Springer Nature

DOWNLOAD EBOOK

Graphs are useful data structures in complex real-life applications such as modeling physical systems, learning molecular fingerprints, controlling traffic netw