Parametrized Measures And Variational Principles

Download Parametrized Measures And Variational Principles full books in PDF, epub, and Kindle. Read online free Parametrized Measures And Variational Principles ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Parametrized Measures and Variational Principles

Parametrized Measures and Variational Principles
Author :
Publisher : Springer Science & Business Media
Total Pages : 238
Release :
ISBN-10 : 3764356979
ISBN-13 : 9783764356972
Rating : 4/5 (972 Downloads)

Book Synopsis Parametrized Measures and Variational Principles by : Pablo Pedregal

Download or read book Parametrized Measures and Variational Principles written by Pablo Pedregal and published by Springer Science & Business Media. This book was released on 1997-03 with total page 238 pages. Available in PDF, EPUB and Kindle. Book excerpt: Weak convergence is a basic tool of modern nonlinear analysis because it enjoys the same compactness properties that finite dimensional spaces do: basically, bounded sequences are weak relatively compact sets. Nonetheless, weak conver gence does not behave as one would desire with respect to nonlinear functionals and operations. This difficulty is what makes nonlinear analysis much harder than would normally be expected. Parametrized measures is a device to under stand weak convergence and its behavior with respect to nonlinear functionals. Under suitable hypotheses, it yields a way of representing through integrals weak limits of compositions with nonlinear functions. It is particularly helpful in comprehending oscillatory phenomena and in keeping track of how oscilla tions change when a nonlinear functional is applied. Weak convergence also plays a fundamental role in the modern treatment of the calculus of variations, again because uniform bounds in norm for se quences allow to have weak convergent subsequences. In order to achieve the existence of minimizers for a particular functional, the property of weak lower semicontinuity should be established first. This is the crucial and most delicate step in the so-called direct method of the calculus of variations. A fairly large amount of work has been devoted to determine under what assumptions we can have this lower semicontinuity with respect to weak topologies for nonlin ear functionals in the form of integrals. The conclusion of all this work is that some type of convexity, understood in a broader sense, is usually involved.


Parametrized Measures and Variational Principles Related Books