Practical Data Analysis Cookbook

Download Practical Data Analysis Cookbook full books in PDF, epub, and Kindle. Read online free Practical Data Analysis Cookbook ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Practical Data Analysis Cookbook

Practical Data Analysis Cookbook
Author :
Publisher : Packt Publishing Ltd
Total Pages : 384
Release :
ISBN-10 : 9781783558513
ISBN-13 : 1783558512
Rating : 4/5 (512 Downloads)

Book Synopsis Practical Data Analysis Cookbook by : Tomasz Drabas

Download or read book Practical Data Analysis Cookbook written by Tomasz Drabas and published by Packt Publishing Ltd. This book was released on 2016-04-29 with total page 384 pages. Available in PDF, EPUB and Kindle. Book excerpt: Over 60 practical recipes on data exploration and analysis About This Book Clean dirty data, extract accurate information, and explore the relationships between variables Forecast the output of an electric plant and the water flow of American rivers using pandas, NumPy, Statsmodels, and scikit-learn Find and extract the most important features from your dataset using the most efficient Python libraries Who This Book Is For If you are a beginner or intermediate-level professional who is looking to solve your day-to-day, analytical problems with Python, this book is for you. Even with no prior programming and data analytics experience, you will be able to finish each recipe and learn while doing so. What You Will Learn Read, clean, transform, and store your data usng Pandas and OpenRefine Understand your data and explore the relationships between variables using Pandas and D3.js Explore a variety of techniques to classify and cluster outbound marketing campaign calls data of a bank using Pandas, mlpy, NumPy, and Statsmodels Reduce the dimensionality of your dataset and extract the most important features with pandas, NumPy, and mlpy Predict the output of a power plant with regression models and forecast water flow of American rivers with time series methods using pandas, NumPy, Statsmodels, and scikit-learn Explore social interactions and identify fraudulent activities with graph theory concepts using NetworkX and Gephi Scrape Internet web pages using urlib and BeautifulSoup and get to know natural language processing techniques to classify movies ratings using NLTK Study simulation techniques in an example of a gas station with agent-based modeling In Detail Data analysis is the process of systematically applying statistical and logical techniques to describe and illustrate, condense and recap, and evaluate data. Its importance has been most visible in the sector of information and communication technologies. It is an employee asset in almost all economy sectors. This book provides a rich set of independent recipes that dive into the world of data analytics and modeling using a variety of approaches, tools, and algorithms. You will learn the basics of data handling and modeling, and will build your skills gradually toward more advanced topics such as simulations, raw text processing, social interactions analysis, and more. First, you will learn some easy-to-follow practical techniques on how to read, write, clean, reformat, explore, and understand your data—arguably the most time-consuming (and the most important) tasks for any data scientist. In the second section, different independent recipes delve into intermediate topics such as classification, clustering, predicting, and more. With the help of these easy-to-follow recipes, you will also learn techniques that can easily be expanded to solve other real-life problems such as building recommendation engines or predictive models. In the third section, you will explore more advanced topics: from the field of graph theory through natural language processing, discrete choice modeling to simulations. You will also get to expand your knowledge on identifying fraud origin with the help of a graph, scrape Internet websites, and classify movies based on their reviews. By the end of this book, you will be able to efficiently use the vast array of tools that the Python environment has to offer. Style and approach This hands-on recipe guide is divided into three sections that tackle and overcome real-world data modeling problems faced by data analysts/scientist in their everyday work. Each independent recipe is written in an easy-to-follow and step-by-step fashion.


Practical Data Analysis Cookbook Related Books

Practical Data Analysis Cookbook
Language: en
Pages: 384
Authors: Tomasz Drabas
Categories: Computers
Type: BOOK - Published: 2016-04-29 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Over 60 practical recipes on data exploration and analysis About This Book Clean dirty data, extract accurate information, and explore the relationships between
Practical Data Science Cookbook
Language: en
Pages: 428
Authors: Prabhanjan Tattar
Categories: Computers
Type: BOOK - Published: 2017-06-29 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Over 85 recipes to help you complete real-world data science projects in R and Python About This Book Tackle every step in the data science pipeline and use it
Practical Data Analysis
Language: en
Pages: 330
Authors: Hector Cuesta
Categories: Computers
Type: BOOK - Published: 2016-09-30 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

A practical guide to obtaining, transforming, exploring, and analyzing data using Python, MongoDB, and Apache Spark About This Book Learn to use various data an
Python Data Analysis Cookbook
Language: en
Pages: 462
Authors: Ivan Idris
Categories: Computers
Type: BOOK - Published: 2016-07-22 - Publisher: Packt Publishing Ltd

DOWNLOAD EBOOK

Over 140 practical recipes to help you make sense of your data with ease and build production-ready data apps About This Book Analyze Big Data sets, create attr
Access Data Analysis Cookbook
Language: en
Pages: 369
Authors: Ken Bluttman
Categories: Computers
Type: BOOK - Published: 2007-05-14 - Publisher: "O'Reilly Media, Inc."

DOWNLOAD EBOOK

If you have large quantities of data in a Microsoft Access database, and need to study that data in depth, this book is a data cruncher's dream. Access Data Ana