Sequential Approximate Multiobjective Optimization Using Computational Intelligence

Download Sequential Approximate Multiobjective Optimization Using Computational Intelligence full books in PDF, epub, and Kindle. Read online free Sequential Approximate Multiobjective Optimization Using Computational Intelligence ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Sequential Approximate Multiobjective Optimization Using Computational Intelligence

Sequential Approximate Multiobjective Optimization Using Computational Intelligence
Author :
Publisher : Springer Science & Business Media
Total Pages : 200
Release :
ISBN-10 : 9783540889106
ISBN-13 : 3540889108
Rating : 4/5 (108 Downloads)

Book Synopsis Sequential Approximate Multiobjective Optimization Using Computational Intelligence by : Hirotaka Nakayama

Download or read book Sequential Approximate Multiobjective Optimization Using Computational Intelligence written by Hirotaka Nakayama and published by Springer Science & Business Media. This book was released on 2009-06-12 with total page 200 pages. Available in PDF, EPUB and Kindle. Book excerpt: Many kinds of practical problems such as engineering design, industrial m- agement and ?nancial investment have multiple objectives con?icting with eachother. Thoseproblemscanbeformulatedasmultiobjectiveoptimization. In multiobjective optimization, there does not necessarily a unique solution which minimizes (or maximizes) all objective functions. We usually face to the situation in which if we want to improve some of objectives, we have to give up other objectives. Finally, we pay much attention on how much to improve some of objectives and instead how much to give up others. This is called “trade-o?. ” Note that making trade-o? is a problem of value ju- ment of decision makers. One of main themes of multiobjective optimization is how to incorporate value judgment of decision makers into decision s- port systems. There are two major issues in value judgment (1) multiplicity of value judgment and (2) dynamics of value judgment. The multiplicity of value judgment is treated as trade-o? analysis in multiobjective optimi- tion. On the other hand, dynamics of value judgment is di?cult to treat. However, it is natural that decision makers change their value judgment even in decision making process, because they obtain new information during the process. Therefore, decision support systems are to be robust against the change of value judgment of decision makers. To this aim, interactive p- grammingmethodswhichsearchasolutionwhileelicitingpartialinformation on value judgment of decision makers have been developed. Those methods are required to perform ?exibly for decision makers’ attitude.


Sequential Approximate Multiobjective Optimization Using Computational Intelligence Related Books