The Selected Works Of Roderick S C Wong

Download The Selected Works Of Roderick S C Wong full books in PDF, epub, and Kindle. Read online free The Selected Works Of Roderick S C Wong ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

The Selected Works of Roderick S C Wong

The Selected Works of Roderick S C Wong
Author :
Publisher : World Scientific
Total Pages : 1557
Release :
ISBN-10 : 9789814656061
ISBN-13 : 9814656062
Rating : 4/5 (062 Downloads)

Book Synopsis The Selected Works of Roderick S C Wong by : Dan Dai

Download or read book The Selected Works of Roderick S C Wong written by Dan Dai and published by World Scientific. This book was released on 2015-08-06 with total page 1557 pages. Available in PDF, EPUB and Kindle. Book excerpt: This collection, in three volumes, presents the scientific achievements of Roderick S C Wong, spanning 45 years of his career. It provides a comprehensive overview of the author's work which includes significant discoveries and pioneering contributions, such as his deep analysis on asymptotic approximations of integrals and uniform asymptotic expansions of orthogonal polynomials and special functions; his important contributions to perturbation methods for ordinary differential equations and difference equations; and his advocation of the Riemann–Hilbert approach for global asymptotics of orthogonal polynomials. The book is an essential source of reference for mathematicians, statisticians, engineers, and physicists. It is also a suitable reading for graduate students and interested senior year undergraduate students. Contents:Volume 1:The Asymptotic Behaviour of μ(z, β,α)A Generalization of Watson's LemmaLinear Equations in Infinite MatricesAsymptotic Solutions of Linear Volterra Integral Equations with Singular KernelsOn Infinite Systems of Linear Differential EquationsError Bounds for Asymptotic Expansions of HankelExplicit Error Terms for Asymptotic Expansions of StieltjesExplicit Error Terms for Asymptotic Expansions of MellinAsymptotic Expansion of Multiple Fourier TransformsExact Remainders for Asymptotic Expansions of FractionalAsymptotic Expansion of the Hilbert TransformError Bounds for Asymptotic Expansions of IntegralsDistributional Derivation of an Asymptotic ExpansionOn a Method of Asymptotic Evaluation of Multiple IntegralsAsymptotic Expansion of the Lebesgue Constants Associated with Polynomial InterpolationQuadrature Formulas for Oscillatory Integral TransformsGeneralized Mellin Convolutions and Their Asymptotic Expansions,A Uniform Asymptotic Expansion of the Jacobi Polynomials with Error BoundsAsymptotic Expansion of a Multiple IntegralAsymptotic Expansion of a Double Integral with a Curve of Stationary PointsSzegö's Conjecture on Lebesgue Constants for Legendre SeriesUniform Asymptotic Expansions of Laguerre PolynomialsTransformation to Canonical Form for Uniform Asymptotic ExpansionsMultidimensional Stationary Phase Approximation: Boundary Stationary PointTwo-Dimensional Stationary Phase Approximation: Stationary Point at a CornerAsymptotic Expansions for Second-Order Linear Difference EquationsAsymptotic Expansions for Second-Order Linear Difference Equations, IIAsymptotic Behaviour of the Fundamental Solution to ∂u/∂t = –(–Δ)muA Bernstein-Type Inequality for the Jacobi PolynomialError Bounds for Asymptotic Expansions of Laplace ConvolutionsVolume 2:Asymptotic Behavior of the Pollaczek Polynomials and Their ZerosJustification of the Stationary Phase Approximation in Time-Domain AsymptoticsAsymptotic Expansions of the Generalized Bessel PolynomialsUniform Asymptotic Expansions for Meixner Polynomials"Best Possible" Upper and Lower Bounds for the Zeros of the Bessel Function Jν(x)Justification of a Perturbation Approximation of the Klein–Gordon EquationSmoothing of Stokes's Discontinuity for the Generalized Bessel Function. IIUniform Asymptotic Expansions of a Double Integral: Coalescence of Two Stationary PointsUniform Asymptotic Formula for Orthogonal Polynomials with Exponential WeightOn the Asymptotics of the Meixner–Pollaczek Polynomials and Their ZerosGevrey Asymptotics and Stieltjes Transforms of Algebraically Decaying FunctionsExponential Asymptotics of the Mittag–Leffler FunctionOn the Ackerberg–O'Malley ResonanceAsymptotic Expansions for Second-Order Linear Difference Equations with a Turning PointOn a Two-Point Boundary-Value Problem with Spurious SolutionsShooting Method for Nonlinear Singularly Perturbed Boundary-Value ProblemsVolume 3:Asymptotic Expansion of the Krawtchouk Polynomials and Their ZerosOn a Uniform Treatment of Darboux's MethodLinear Difference Equations with Transition PointsUniform Asymptotics for Jacobi Polynomials with Varying Large Negative Parameters — A Riemann–Hilbert ApproachUniform Asymptotics of the Stieltjes–Wigert Polynomials via the Riemann–Hilbert ApproachA Singularly Perturbed Boundary-Value Problem Arising in Phase TransitionsOn the Number of Solutions to Carrier's ProblemAsymptotic Expansions for Riemann–Hilbert ProblemsOn the Connection Formulas of the Third Painlevé TranscendentHyperasymptotic Expansions of the Modified Bessel Function of the Third Kind of Purely Imaginary OrderGlobal Asymptotics for Polynomials Orthogonal with Exponential Quartic WeightThe Riemann–Hilbert Approach to Global Asymptotics of Discrete Orthogonal Polynomials with Infinite NodesGlobal Asymptotics of the Meixner PolynomialsAsymptotics of Orthogonal Polynomials via Recurrence RelationsUniform Asymptotic Expansions for the Discrete Chebyshev PolynomialsGlobal Asymptotics of the Hahn PolynomialsGlobal Asymptotics of Stieltjes–Wigert Polynomials Readership: Undergraduates, gradudates and researchers in the areas of asymptotic approximations of integrals, singular perturbation theory, difference equations and Riemann–Hilbert approach. Key Features:This book provides a broader viewpoint of asymptoticsIt contains about half of the papers that Roderick Wong has written on asymptoticsIt demonstrates how analysis is used to make some formal results mathematically rigorousThis collection presents the scientific achievements of the authorKeywords:Asymptotic Analysis;Perturbation Method;Special Functions;Orthogonal Polynomials;Integral Transforms;Integral Equations;Ordinary Differential Equations;Difference Equations;Riemann–Hilbert Problem


The Selected Works of Roderick S C Wong Related Books

The Selected Works of Roderick S C Wong
Language: en
Pages: 1557
Authors: Dan Dai
Categories: Mathematics
Type: BOOK - Published: 2015-08-06 - Publisher: World Scientific

DOWNLOAD EBOOK

This collection, in three volumes, presents the scientific achievements of Roderick S C Wong, spanning 45 years of his career. It provides a comprehensive overv
Collected Papers Of Stephen Smale, The (In 3 Volumes) - Volume 3
Language: en
Pages: 659
Authors: Roderick S C Wong
Categories: Mathematics
Type: BOOK - Published: 2000-06-30 - Publisher: World Scientific

DOWNLOAD EBOOK

This invaluable book contains the collected papers of Stephen Smale. These are divided into eight groups: topology; calculus of variations; dynamics; mechanics;
Collected Papers Of Stephen Smale, The (In 3 Volumes) - Volume 1
Language: en
Pages: 524
Authors: Roderick S C Wong
Categories: Mathematics
Type: BOOK - Published: 2000-06-30 - Publisher: World Scientific

DOWNLOAD EBOOK

This invaluable book contains the collected papers of Stephen Smale. These are divided into eight groups: topology; calculus of variations; dynamics; mechanics;
Collected Papers Of Stephen Smale, The (In 3 Volumes) - Volume 2
Language: en
Pages: 557
Authors: Roderick S C Wong
Categories: Mathematics
Type: BOOK - Published: 2000-06-30 - Publisher: World Scientific

DOWNLOAD EBOOK

This invaluable book contains the collected papers of Stephen Smale. These are divided into eight groups: topology; calculus of variations; dynamics; mechanics;
More Explorations in Complex Functions
Language: en
Pages: 410
Authors: Richard Beals
Categories: Mathematics
Type: BOOK - Published: 2023-07-01 - Publisher: Springer Nature

DOWNLOAD EBOOK

More Explorations in Complex Functions is something of a sequel to GTM 287, Explorations in Complex Functions. Both texts introduce a variety of topics, from co