Use Of Carbon Fiber Reinforced Polymer Sheets As Transverse Reinforcement In Bridge Columns

Download Use Of Carbon Fiber Reinforced Polymer Sheets As Transverse Reinforcement In Bridge Columns full books in PDF, epub, and Kindle. Read online free Use Of Carbon Fiber Reinforced Polymer Sheets As Transverse Reinforcement In Bridge Columns ebook anywhere anytime directly on your device. Fast Download speed and no annoying ads. We cannot guarantee that every ebooks is available!

Use of Carbon Fiber Reinforced Polymer Sheets as Transverse Reinforcement in Bridge Columns

Use of Carbon Fiber Reinforced Polymer Sheets as Transverse Reinforcement in Bridge Columns
Author :
Publisher :
Total Pages : 0
Release :
ISBN-10 : OCLC:857067231
ISBN-13 :
Rating : 4/5 ( Downloads)

Book Synopsis Use of Carbon Fiber Reinforced Polymer Sheets as Transverse Reinforcement in Bridge Columns by : Gamal Elnabelsya

Download or read book Use of Carbon Fiber Reinforced Polymer Sheets as Transverse Reinforcement in Bridge Columns written by Gamal Elnabelsya and published by . This book was released on 2013 with total page 0 pages. Available in PDF, EPUB and Kindle. Book excerpt: Performance of bridges during previous earthquakes has demonstrated that many structural failures could be attributed to seismic deficiencies in bridge columns. Lack of transverse reinforcement and inadequate splicing of longitudinal reinforcement in potential plastic hinge regions of columns constitute primary reasons for their poor performance. A number of column retrofit techniques have been developed and tested in the past. These techniques include steel jacketing, reinforced concrete jacketing and use of transverse prestressing (RetroBelt) for concrete confinement, shear strengthening and splice clamping. A new retrofit technique, involving fibre reinforced polymer (FRP) jacketing has emerged as a convenient and structurally sound alternative with improved durability. The new technique, although received acceptance in the construction industry, needs to be fully developed as a viable seismic retrofit methodology, supported by reliable design and construction procedures. The successful application of externally applied FRP jackets to existing columns, coupled with deteriorating bridge infrastructure, raised the possibility of using FRP reinforcement for new construction. Stay-in-place formwork, in the form of FRP tubes are being researched for its feasibility. The FRP stay-in-place tubes offer ease in construction, convenient formwork, and when left in place, the protection of concrete against environmental effects, including the protection of steel reinforcement against corrosion, while also serving as column transverse reinforcement. Combined experimental and analytical research was conducted in the current project to i) improve the performance of FRP column jacketing for existing bridge columns, and ii) to develop FRP stay-in-place formwork for new bridge columns. The experimental phase consisted of design, construction and testing of 7 full-scale reinforced concrete bridge columns under simulated seismic loading. The columns represented both existing seismically deficient bridge columns, and new columns in stay-in-place formwork. The existing columns were deficient in either shear, or flexure, where the flexural deficiencies stemmed from lack of concrete confinement and/or use of inadequately spliced longitudinal reinforcement. The test parameters included cross-sectional shape (circular or square), reinforcement splicing, column shear span for flexure and shear-dominant behaviour, FRP jacket thickness, as well as use of FRP tubes as stay-in-place formwork, with or without internally embedded FRP crossties. The columns were subjected to a constant axial compression and incrementally increasing inelastic deformation reversals. The results, presented and discussed in this thesis, indicate that the FRP retrofit methodology provides significant confinement to circular and square columns, improving column ductility substantially. The FRP jack also improved diagonal tension capacity of columns, changing brittle shear-dominant column behavior to ductile flexure dominant response. The jackets, when the transverse strains are controlled, are able to improve performance of inadequately spliced circular columns, while remain somewhat ineffective in improving the performance of spliced square columns. FRP stay-in-place formwork provides excellent ductility to circular and square columns in new concrete columns, offering tremendous potential for use in practice. The analytical phase of the project demonstrates that the current analytical techniques for column analysis can be used for columns with external FRP reinforcement, provided that appropriate material models are used for confined concrete, FRP composites and reinforcement steel. Plastic analysis for flexure, starting with sectional moment-curvature analysis and continuing into member analysis incorporating the formation of plastic hinging, provide excellent predictions of inelastic force-deformation envelopes of recorded hysteretic behaviour. A displacement based design procedure adapted to FRP jacketed columns, as well as columns in FRP stay-in-place formwork provide a reliable design procedure for both retrofitting existing columns and designing new FRP reinforced concrete columns.


Use of Carbon Fiber Reinforced Polymer Sheets as Transverse Reinforcement in Bridge Columns Related Books

Use of Carbon Fiber Reinforced Polymer Sheets as Transverse Reinforcement in Bridge Columns
Language: en
Pages: 0
Authors: Gamal Elnabelsya
Categories:
Type: BOOK - Published: 2013 - Publisher:

DOWNLOAD EBOOK

Performance of bridges during previous earthquakes has demonstrated that many structural failures could be attributed to seismic deficiencies in bridge columns.
Field Applications of FRP Reinforcement
Language: en
Pages: 452
Authors: S. H. Rizkalla
Categories: Technology & Engineering
Type: BOOK - Published: 2003 - Publisher:

DOWNLOAD EBOOK

.".. papers presented at the ACI Fall 2003 Convention, in Boston, Massachusetts"--P. iii.
Use of Carbon Fiber Reinforced Polymer (CFRP) Including Sheets, Rods, and Ropes in Strengthening and Repairing Long Reinforced Concrete Columns
Language: en
Pages: 174
Authors:
Categories: Carbon fiber-reinforced plastics
Type: BOOK - Published: 2020 - Publisher:

DOWNLOAD EBOOK

The use of FRP materials in strengthening and repairing of reinforced concrete (RC) structures has increased in the past two decades. Recently, FRP materials ha
Behavior of Carbon Fiber Reinforced Polymer Jacket Retrofitted Reinforced Concrete Bridge Columns in Cascadia Subduction Zone Earthquakes
Language: en
Pages: 0
Authors: William Nickelson
Categories: Bridges
Type: BOOK - Published: 2022 - Publisher:

DOWNLOAD EBOOK

Bridges built before the early 1970s contain seismic vulnerabilities not accounted for in older design codes. Retrofitting with carbon fiber reinforced polymer
Advanced fibre-reinforced polymer (FRP) composites for structural applications
Language: en
Pages: 51
Authors: L.C. Hollaway
Categories: Technology & Engineering
Type: BOOK - Published: 2013-09-30 - Publisher: Elsevier Inc. Chapters

DOWNLOAD EBOOK

Chapters 16 and discuss the development of the advanced polymer composite material applications in bridge engineering. They demonstrate the innovative types of